Free-Fall Simulation

Freefall.sb2 In this section, I’1l present an application that simulates the motion of a

falling object. Ignoring the effects of buoyancy and air resistance, when

an object at rest is dropped from some height, the distance d (in meters)
fallen by the object during time ¢ (in seconds) is given by d = gi*, where
g=9.8m/s is the gravitational acceleration. The goal of this simulation is
to show the position of the falling object at times 0.5 s, 1.0s, 1.55,2.0 s, and

so on, until the object reaches the ground. The interface for this simulation
is shown in Figure 7-29.

Duration of the fall
5|~ Distance fallen
Q =L
]
Object at rest falling from a
)mB { height of 35 meters. It has
o the following costumes:
0 5o
mg e O
o 153 ball marker
éf} :[= y-position: 136
8: The startup handler of: gm ty 10—
’]) :[- y-position: —132
llet i (B ;L__“: W, L .
e —| mes]aea s
| Q 1;[\ ot Enu nmpl oooif
imE
of the Stage without

Cexits ©, and the
time the bullet moy
»t increases the Hi
ng. On the othert
sts GameOver to
ited since it has fir

Figure 7-29: User interface for the free-fall simulation

An object at rest (the ball in the figure) will be allowed to fall from a
height of 35 m. A simple substitution in the above formula shows that the
object will reach the ground after t= \/(2x35)/ 9.8 = 2.67 5. The application
has one sprite (called Ball) that has the two costumes shown in the figure.
When it is time to show the position of the falling ball, the sprite changes

momentarily to the marker costume, makes a stamp, and switches back to
the ball costume.

The simulation starts w.

yuld add many fez

and ket hen the green flag is clicked. In response, the

Ball sprite runs the script shown in Figure 7-30.
3 1 During initialization ®
erent SPEECSEE

» the sprite moves to its starting position, switches
cds.

10 the ball costume, clears its voice bubble from the previous run, and clears
p the Stage from any previous stamps. It then initializes t and counter to 0.
The variable t represents the duration of the fall, and counter keeps track
16f the number of loop repetitions.
& The script then enters an infinite loop @ to calculate the simulation
Patameters at different time intervals. It performs those calculations and
up dates the ha]l’s position every 0.05 s ® to ensure the ball’s smooth move-
BERL. Every 0.05 s, (he value of the time variable t is updated, and the dis-

' ce t.he ball has fallen (d) is calculated. The value of the counter variable
»lso cremented by 1.

ify the game
th a few of ¥

Repetition: A Deeper Exploration of Loops 177

178

Chapter 7

Figure 7-30: Script for the Ball sprite in the free-fall simulation

If the ball reaches the ground (which happens at d > 35), the script
sets the ball’s y-position to that of the ground, displays the actual duration
of the journey, and stops the script to end the simulation .

Otherwise, the script sets the vertical position of the ball in accor-
dance with the fallen distance ©. Since a height of 35 m corresponds to
268 pixels on the Stage (see Figure 7-29), a distance of d meters corre-
sponds to 268 * (d / 35). The final y-position is established by subtracting
this number from the initial y-position, which is 136.

Since the iteration duration is 0.05 s, it takes 10 iterations to get 0.5s.
Thus, when the counter becomes 10, 20, 30, and so on, the Ball sprite
switches to (and stamps) the marker costume to show the position of the
falling ball at those instants ®.

Figure 7-31 illustrates the result of running this simulation. Note
how the distance fallen in each time interval increases as the object falls.
Because of gravity, the ball accelerates—its velocity increases—at a rate
of 9.8 m/sz.

TRY ITOUT 7-9

Open the application and run it to understand how it works. Try converting the
simulation into a game in which players drop the ball to hit a moving object on
the ground. You can add a score, change the speed of the target, or even set the
action on another planet (change the gravitational acceleration).

(), 7§
define Initialize i o (35 - = s Ta:h‘;;
£k i
’mg Q p— “ i o
DD D | 5o - J o e Thes.e markers indicate the ball’s
. &7 \ position at times 0.5, 1.0, 1.5,
{J :.?:g ' 15 rﬂ - - v— o simin QMA S . —— oo 20, Gnd 25 Seconds
o) =
o o I 7 | Actual time: 2.67
L) I | (5)] & { sec.
R b /P—N - o s — D—— T —
ap = o0
define ShowMark 0 1;}' - [oea el oy ™, m@ 4444
B 1T O
switch costume to marker 1 f £ e
e e ba P Figure 7-31: Output of the free-fall simulation

Projectile Motion Simulator

glile.sb2 Consider a ball fired at some initial velocity (v
' at an angle ¢ from the horizontal. You can
resolving the velocity vector (vp) into its horizontal and vertical components
at different times. The horizontal component remains constant, but the
vertical component is affected by gravity. When the motions corresponding
to these two components are combined, the resulting path is a parabola.

Let’s examine the equations that govern projectile motion (neglecting air
resistance).

) from a cannon that points
analyze the ball’s trajectory by

simulation

appens at d 2 35), the §él
1d, displays the actual
he simulation @.
ssition of the ball in a
ight of 35 m corresg
distance of d meters
1 is established by su
ch is 1568]
takes 10 iterations
), and so on, the Ba
e to show the posil

The origin of our coordinate system is the point at which the ball be
its flight, so the ball’s x-coordinate at any time, ¢, is given by x() = (A
and the y-coordinate is y(z) = Uo,t = (0.5) g, where Uy, =V, cos 0 is the
X-component of v,; v, = v, sin 6 is the y-component of v;; and g= 9.8 m/s*
is the gravitational acceleration. Using these equations, we can calculate
the total flight time, the maximum height, and the horizontal range of the
ball. The equations for these quantities are shown in Figure 7-32.

gins

at the to, v, =0

maximum height
-~

B ('UO sin 9)2
—T

ling this simulatic
| increases as the
velocity increase

¥

travel time
2v, sin 6
g

I . ve sin 20
g
igure 7-32: Parabolic trajectory of a ball

Repetition: A Deeper Exploration of Loops 179

A A e —y - — g

1 .

from 0 to 23. We need the Hour hand to point toward 0° (that is, up) for
hour 0, 30° for hour one, 60° for hour two, and so on, as illustrated in the W
figure. Of course, if the current time is, let’s say, 11:50, we don’t want the
Hour hand to point exactly at 11 but rather more toward 12. We can make
this adjustment by taking the current minutes into account.

Since every hour (or 60 minutes) corresponds to 30° on the face of the
clock, every minute is worth 2°. Therefore, every minute, we need to adjust
the angle of the Hour hand by the current number of minutes divided by 2,

as shown in the script.
The script for the Time sprite is trivial and isn’t shown here. It uses ‘

nested join blocks to construct a display string of the form hour:min:sec and
shows this string in a think bubble, as shown in Figure 7-20.

TRY IT OUT 7-7

lag is clicked. Ip res
“status based on th
1tes are shown ;

Ponse,)
Open the application and run it. Change the script for the Min sprite to make it

move smoothly, instead of jumping every minute. (Hint: Use the same idea we
applied to smooth the movement of the hour hand.] Also, change the script of the
Time sprite to display a string of the form “3:25:00 pm” (12-hour format) instead of
"15:25:00" (24-hour format). Think of other ways to enhance the application and

try to implement them as well. ‘

Bird Shooter Game

BidShooter.sb2 Now, let’s make a simple game that uses most of the blocks we introduced in
:d by the current block this chapter. The player’s goal will be to knock two birds out of the sky, and
seconds, the Sec sprite you can see the user interface in Figure 7-23.
?ec sprite should poing
>ec hand should turp g

i i
€asoning applies to the

| TimeLeft B

otice the S i
e ec handJump- o
' inute. Now, let’s look
-22,
Bird2 sprite
Bullet sprite

Clone of Bird1

or 30)
or 60)

Shooter sprite

Figure 7-23: User interface of the bird shooter game

Repetition: A Deeper Exploration of Lloops

174

Chapter 7

As shown, the game contains five sprites: Bird1, a clone of Bird1, Birga

a shooter, and a bullet. The player can move the shooter horizontal]y usin:
the left and right keyboard arrows. Pressing the spacebar fires a bullet
into the sky. If the bullet hits Bird1 or its clone, the player gets a point, Bird2
is an endangered species, so the player isn’t allowed to shoot that one; if the
bullet hits that sprite, the game ends. The player has one minute to shogg
as many birds as possible.

- Each bird uses two costumes. When switching between these two cog.
tumes, the birds appear to be flapping their wings.

The Stage has two backgrounds named start and end. The start back.
ground is shown in Figure 7-23. The end background is identical, with the
addition of the words Game Over to the center of the image. The scripts thag
belong to the Stage are shown in Figure 7-24.

Figure 7-24: The scripts for the Stage in the bird shooter game

When the green flag icon is
pressed, the Stage switches to the
start background, resets the timer,
and starts a loop that updates and
checks the remaining game time,
which is tracked by the TimeLeft vari-
able. When TimeLeft reaches 0 or
when the Stage receives the GameOver
broadcast message, it executes the
GameOver handler. This script waits
for a short time to allow the birds to
hide themselves, switches to the end
backdrop, and calls stop all to end Figure 7-25: The script for the Shooter
any running scripts. As you’ll see sprite
soon, the GameOver message will be
sent by the Bullet sprite when it hits
Bird2. Let’s now take a look at the
script for the Shooter sprite, shown
in Figure 7-25.

1, a clone of Bjrgy |

shooter horizonta §

spacebar fires 3

e player gets a poin
ed to shoot that ony
has one minyge to}

g between these
iS.

and end. The sta t
und is identical, w
the image. The sey

M right arrow
nge x by €0 '

key left arrow

ngexbvmzz

25: The scripl

This script starts by positioning the shooter in the middle of the bot-
tom edge of the Stage. The script then enters an infinite loop that detects
whether the left or right arrow keys have been pressed and moves the shooter
in the corresponding direction. Now let’s move on to the scripts for Bird1,
shown in Figure 7-26.

go to x: €I v: €D

Figure 7-26: The scripts for the Bird1 sprite

When the game starts, Bird1 clones itself, moves to left edge of the
Stage, and calls the Start procedure. The clone also starts at the left edge
of the Stage (but at a different height) and calls Start. This procedure uses
a forever loop to move the bird and its clone horizontally across the Stage,
from left to right with random steps. When the bird approaches the right
edge of the stage, it is moved back to the left edge, as if it wraps around and
reappears. The last script hides both birds when the GameOver message is
broadcast.

The scripts for Bird2 are very similar
to those of Bird1, so we won’t show them
here. When the green flag is clicked, Bird2
moves to the right edge of the Stage at
a height of 40 and then executes a loop
similar to that of the Start procedure of
Figure 7-26. The bird simply moves from
left to right, wrapping around when it
I€aches the right edge of the Stage. Bird2
also responds to the GameOver broadcast
by hiding itself.

Of course, the player can’t hit any
birds just by moving the shooter around,
and that’s where the Bullet sprite comes in.

. T'he main script for this sprite is shown in Figure 7-27: The main script of the
-~ Figure 7.97.

Bullet sprite

Repetition: A Deeper Exploration of Loops 175

When the green flag is clicked,
this script initializes the variables
Fired (the number of bullets fired) s
and Hits (how many birds have been
hit) to 0. It then points the Bullet
sprite up and hides it. After that,
it enters an infinite loop to repeat-
edly check the status of the space-
bar key. When spacebar is pressed,
the script increments Fired by 1 and
creates a clone of the Bullet sprite
to move the bullet upward, as we’ll
see next. The script then waits some
time to prevent the player from fir-
ing another bullet too soon. Now ’
we’re ready to study the script of the - = -]
cloned bullet, shown in Figure 7-28. ? , 50\

First, the Bullet is moved to the e ©
center of the Shooter and is made
visible @. The Bullet is then moved
upward in increments of 10 steps
using a repeat until block @. If
the bullet’s y-coordinate exceeds
160, then the Bullet has reached the upper edge of the Stage without touch-
ing any birds. In this case, the repeat until block exits ®, and the clone is
deleted. A hit check, however, is performed each time the bullet moves. If
the bullet touches Bird1 (or its clone) ®, the script increases the Hits variable
and plays a sound to make the game more exciting. On the other hand,
if the bullet touches Bird2 @, the script broadcasts GameOver to signal the
end of the game. In both cases, the clone is deleted since it has finished
its job.

The game is now fully functional, but you could add many features toit
Here are two suggestions:

Figure 7-28: The startup handler of q
cloned Bullet

e Give the player a limited number of bullets and keep score based on the
number of missed shots.

Add more birds and have them move at different speeds. Reward the
player with more points for hitting faster birds.

TRY ITOUT 7-8

Open the game and play it to see how it works. Modify the game with some of
the enhancements suggested above—or come up with a few of your own and
implement those!

176 Chapter 7

